法国数学家拉格朗日生平 拉格朗日数学成就贡献有哪些?

文二2019-04-10

三、天体力学——天体力学的奠基者

天体力学是在牛顿发表万有引力定律(1687)时诞生的,很快成为天文学的主流。它的学科内容和基本理论是在18世纪后期建立的。

主要奠基者为欧拉,A.C.克莱罗(Clairaut)、达朗贝尔、拉格朗日和拉普拉斯。最后由拉普拉斯集大成而正式建立经典天体力学。

拉格朗日一生的研究工作中,约有一半同天体力学有关,但他主要是数学家,他要把力学作为数学分析的一个分支,而又把天体力学作为力学的一个分支对待。虽然如此,他在天体力学的奠基过程中,仍有重大历史性贡献。

首先在建立天体运动方程上,拉格朗日用他在分析力学中的原理,建立起各类天体的运动方程。其中特别是根据他在微分方程解法的任意常数变异法,建立了以天体椭圆轨道根数为基本变量的运动方程,仍称作拉格朗日行星运动方程,并在广泛应用。

法国数学家拉格朗日生平 拉格朗日数学成就贡献有哪些?

此方程对摄动理论的建立和完善起了重大作用,方程在1780年获巴黎科学院奖的论文“彗星在行星作用下的摄动理论研究”中给出,得到达朗贝尔和拉普拉斯的高度评价。另外在一篇有关三体问题的获奖文章中,把三体问题的运动方程组第一次降到七阶。

在天体运动方程解法中,拉格朗日的重大历史性贡献是发现三体问题运动方程的五个特解,即拉格朗日平动解。其中两个解是三体围绕质量中心作椭圆运动过程中,永远保持等边三角形。

他的这个理论结果在100多年后得到证实。

在具体天体的运动研究中,拉格朗日也有大量重要贡献,其中大部分是参加巴黎科学院征奖的课题。他的月球运动理论研究论文多次获奖。

拉格朗日从事的天体力学课题还有很多,如在柏林时期的前半部分,还研究了用三个时刻的观测资料计算彗星轨道的方法,所得结果成为轨道计算的基础。

另外他还得到了一种力学模型——两个不动中心问题的解,这是欧拉已讨论过的,又称为欧拉问题。是拉格朗日推广到存在离心力的情况,故后来又称为拉格朗日问题。这些模型仍在应用。

有人用作人造卫星运动的近似力学模型。此外,他在《分析力学》中给出的流体静力学的结果,后来成为讨论天体形状理论的基础。

总的看来,拉格朗日在天体力学的五个奠基者中,所做的历史性贡献仅次于拉普拉斯。他创立的“分析力学”对以后天体力学的发展有深远的影响。

最新文章